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ABSTRACT 

A numerical study is performed to investigate flow instability phenomena in a square channel with steady, 
laminar throughflow. The channel rotates around an axis perpendicular to the channel longitudinal axis. 
The flow field extends from the channel entrance to a distance of 120 to 600Dh. The range of Reynolds 
number is Re = 300-2000. The inlet flow velocity is assumed uniform. Surface vorticity intensity is 
introduced to indicate the variation of vortices. It is revealed that at intermediate Reynolds numbers 
(680 > Re > 300), the flow is characterized by three vortex patterns: at slow rotation there is one vortex 
pair; at intermediate rotation a secondary vortex, in addition to the original vortex, emerges near the 
trailing wall and then breaks down downstream; and at rapid rotation the secondary vortex does not exist 
with the flow being restabilized to form a single-pair vortex pattern. At low Reynolds numbers (Re ≤ 300), 
the flow exhibits a single-pair vortex pattern, while at high Reynolds numbers (Re ≥ 680), the flow 
experiences the emergence and breakdown of a secondary vortex, but no restabilization is found with an 
increase in the rotational speed. It is also disclosed that the variation of the vortices is related to the 
distance from the inlet. 
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NOMENCLATURE 

channel height in the y-direction, 
m 
channel width in the z-direction, 
m 
hydraulic diameter, m 
friction factor 
distance from rotational axis to 
inlet, m 
convective heat transfer coeffi­
cient, W/m2 K 
non-dimensional distance from 
rotational axis to inlet, = H/a 
characteristic length in the x-
direction, m 
pressure, Pa 
reduced pressure, 
= P - (ρΩ2R2)/2 

Pc 
P 
Re 

Ro 

Ta 
V, V, W 

Uo 
Vc, Wc 

U, V, W 

characteristic pressure, = μ(U0/a) 
dimensionless reduced pressure 
Reynolds number based on the 
channel height, = U0a/v 
Rossby number based on the 
channel height, = Ωa/U0 

Taylor number = Re Ro 
velocity components in the x-, y-, 
z-directions, respectively, m/sec 
inlet mean velocity, m/sec 
characteristic transverse velocity 
components in y- and z-directions, 
respectively, = U0/η 
dimensionless velocity compo­
nents in (x, y, z) directions, respec­
tively 
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u* 

uo 

X 

Y 

Z 

YC,ZC 

x, y, z 

x', y', z' 

numerical axial flow velocity 
value, = 1 
dimensionless mean axial flow 
velocity 
axial distance measured from flow 
inlet, m 
coordinate perpendicular to the 
rotational axis, m 
distance along rotational axis, m 
characteristic lengths in y- and 
z-directions, = a and b, respec-
tively 
dimensionless coordinate system 
with origin at centre of channel 
cross-section 
dimensionless coordinate system 
with origin at z = —1/2 and 
y = l / 2 

Greek symbols 
η length ratio, = Lx/a 
μ dynamic viscosity, kg/m sec 
v kinematic viscosity, m2/sec 
σ surface vorticity intensity, see (13) 
Ω angular velocity of rotation, 1/sec 
Ξ axial velocity, 1/sec 
ξ non-dimensional axial vorticity 
ξc characteristic axial vorticity, 

= U0/ηa 
ζ aspect ratio, = b/a 

Subscripts 
c characteristic quantity 
o at inlet 
w on wall 
x local value 

INTRODUCTION 

The influence of rotation on fluid flows, such as terrestrial flow1 and flows in rotating machinery2 

has attracted considerable attention, especially the vortex induced by the Coriolis force and flow 
instability in rotating channels. Hart3 was the first to conduct experiments on flow instability 
in a rotating channel flow. Flow visualization with the dye injection method was carried out in 
a rectangular channel with an aspect ratio (b/a) of about 7 at slow to relatively rapid rotational 
speeds. Experimental results demonstrated the existence of three regimes in rotating channel 
flow. A double-vortex secondary flow prevails at slow rotational speeds; an instability in the 
form of longitudinal roll cells occurs at intermediate rotational speeds; and a restabilization of 
flow to a Taylor-Proudman regime happens at high rotational speeds. The Taylor-Proudman 
regime refers to a flow region in which axial velocity profiles do not vary along rotational axis, 
and is similar to that in the Ekman layer1. Hart also performed a linear stability analysis, using 
the Galerkin method to determine the onset of roll cells in a rotating, plane Poiseuille flow 
which corresponds to the limiting case of rectangular channel with an infinite aspect ratio. 
Results were in general agreement with experimental data. 

Johnston et al.4 conducted experiments on a fully-developed turbulent flow in a channel 
(ζ = 7.14) rotating radially at a steady speed and found three stability-related phenomena: (i) 
a reduction (or an increase) in the rate of wall-layer streak bursting in locally stabilized (or 
destabilized) wall layers; (ii) total suppression of transition to turbulence in a stabilized layer; 
(iii) development of large-scale roll cells on the destabilized side of the channel induced by the 
growth of Taylor-Gortler vortex instability. They suggested that the Richardson number might 
be an appropriate local stability parameter, and that local effects of rotational stabilization, such 
as a reduction of turbulence stress in wall layers, can be related to the Richardson number in 
a simple way. 

Lezius and Johnston5 performed a theoretical analysis of laminar roll-cell instability in a 
rotating channel flow. The investigation included a linear stability analysis for the onset of 
laminar roll cells in a rotating, plane Poiseuille flow by means of the finite difference method. 
The specific results obtained indicated that the critical disturbance occurs at Re = 88.53 and 
Ro = 0.5. However, at higher Reynolds numbers, the unstable conditions can be found in the 
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range of 0 < Ro < 3. In general, these results predicted flow instability at a lower Reynolds 
number for a given Rossby number than the results of Hart3. A linear stability analysis was 
carried out for the onset of roll-cell instability in a turbulent, plane Poiseuille flow subjected to 
a radial rotation. Although the analysis was linear using a turbulence model, the results were 
in good agreement with experiments4. Speziale and Thangam7 extended Speziale6 to a numerical 
study on the secondary flow and roll-cell instability in a rotating channel with an aspect ratio 
of eight, 0 < Re < 500 and 0.0001 < Ro < 3. The roll-cell and Taylor-Proudman regimes which 
led to a substantial distortion of axial velocity profiles were found. Results were in agreement 
with the existing experimental data and theoretical predictions. The critical point at Re = 110 
and Ro = 0.5 is higher than the prediction of Lezius and Johnston5. 

Hwang and Jen8 reported a numerical investigation of heat transfer in hydrodynamically and 
thermally fully-developed, laminar flow in rotating isothermal ducts. The temperature 
distribution equation for a fully-developed flow in a stationary passage was modified to evaluate 
the temperature field in a rotating duct. It was disclosed that flow instability (the emergence of 
a secondary vortex) occurred at 25,500 ≤ Re Ta < 20,000 for an aspect ratio of ζ = 1.0 and at 
Re Ta ≥ 82,000 for ζ = 2.0. It was found that a secondary vortex may appear in a certain range 
of Re Ta but may disappear at the same value of Re Ta. Jen et al.9 numerically investigated a 
simultaneously developing laminar flow in a radially rotating isothermal square channel to a 
length of 0.2-0.25(DhRe) and found a secondary vortex breakdown to occur at various Reynolds 
numbers. 

Fann and Yang10 and Fann et al.11 numerically studied transport phenomena in the entrance 
region of radially rotating heated channels with different aspect ratios. The thermal boundary 
conditions included the uniform wall temperature and uniform wall heat flux. The computation 
length was from the channel entrance to about 20 times channel height. Secondary vortices were 
found to appear immediately after the entrance with their number varying with the geometry, 
Reynolds number and location along the channel. 

The present study concerns with flow instability phenomena in a square channel in radial 
rotation with uniform inlet velocity. The computation is carried out up to a distance of 120 to 
600 Dh in order to cover the entire process of vortex evolution. The variation of vortex patterns 
is indicated by surface vorticity intensity. The velocity-vorticity method is employed in the 
formulation12,13. The resulting parabolic equations are solved to determine the axial velocity 
and axial vorticity explicitly14. 

THEORETICAL ANALYSIS 

The physical system to be studied is shown in Figure la. It consists of a flow through a square 
channel rotating at a constant speed Ω about an axis normal to the longitudinal direction of 
the channel. The velocity components in the x-, y- and z-directions are u, v, and w, respectively. 
In order to normalize the governing equations, the velocity, pressure, coordinate variables, and 
geometrical dimension are non-dimensionalized by dividing their respective characteristic 
quantities as follows: 

Here, P* is the reduced pressure. The characteristic quantities, denoted by the subscript c, are 
defined in the nomenclature. The axial vorticity transport equation is introduced to eliminate 
the pressure gradient terms in both the y- and z-direction momentum equations. The 
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non-dimensional axial vorticity can be expressed as: 

The continuity equation and (1) may be combined to yield the velocity equations for v and w. 
Under the assumptions of constant physical properties, the governing equations for an 
incompressible, steady, laminar flow read (details in Fann and Yang10): 
(a) x-momentum equation: 

(b) Axial velocity transport equation: 

(c) Poisson equations for the transverse velocities: 



RADIAL FLOW WITH ROTATION 191 

Because of a relatively strong inertia force in the axial direction, the second derivative (diffusion) 
terms in the x-direction may be neglected and these equations take a parabolic-elliptic form. 
This formulation is so-called the velocity-vorticity method12. The appropriate inlet and boundary 
conditions are: 

The pressure term can be decoupled as: 

By making the parabolic assumption14, the axial pressure gradient is then given 
by: 

where f(x) is determined by the constant flow rate constraint. A staggered mesh network is 
employed in the numerical analysis. The numerical method modified from Patankar14 is used 
to determine the axial velocity and vorticity, and the Power-law scheme is employed (see Fann 
and Yang10 for details). The axial velocity thus obtained must satisfy the continuity equation. 
Otherwise, a new axial pressure gradient is assumed and the computation is repeated for a new 
axial velocity, until the continuity equation is satisfied. The flow rate through each channel cross 
section is calculated using Simpson's rule. 

where u* is the numerical axial velocity value, and u0 is the dimensionless mean axial flow velocity. 
In (4) and (5), the second-order, centred difference method is employed to discretize the y 

and z derivatives, while the three-point backward difference method is used for the x derivatives. 
The criterion of convergence for transverse velocities is set as: 

where n is the iteration sequence number. 
The numerical scheme used in treating the boundary vorticity is adopted from Chou13 to 

improve the accuracy of computation up to the second order, as shown in Figure lb. 

The line iteration method with an under-relaxation factor is utilized in the computations of u 
in order to improve the convergence speed. The point iteration method is employed in calculating 
ξ, v and w, while the three-point forward (or backward) finite difference scheme is used in the 
calculations of the axial velocity gradients for the friction factor. 

The ranges of parameters used in the simulation are: (1) Re = 300-2000, and (2) 
Ro = 0.001-0.50. Because the region of vortex evolution in a rotating channel changes with the 
Reynolds number, the computation length is varied; e.g., 120 Dh for Re ≤ 350, 200 Dh for Re ≤ 670 
and 600 Dh for Re ≥ 1000. The eccentricity distance is 10 Dh. The mesh size used in computations 
is listed in Table 1, where the M and N represent the number of grid points in the y and z 
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Table I Mesh sizes 

0.0 ≤ Ro ≤ 0.05 
0.05 < Ro < 0.20 
Ro ≥ 0.20 

Ro 

∆X/a 

used in numerical computations 

300-400 

45 x 45 
51 x 51 

Ro = 0.0 

1/15 

500 

41 x 41 
45 x 45 
51 x 51 

Re 

600-700 

45 x 45 
51 x 51 

0.0 < Ro < 0.20 

1/25 

1000-2000 

41 x 41 
45 x 45 
51 x 51 

Ro ≥ 0.20 

1/30 

directions, respectively, and the ∆X/a is the grid space in the axial direction. The uniqueness 
and the mesh dependence of the numerical solutions are available in References 10, 11, 15. The 
sequence of computation is presented in Reference 11. 

The friction factor f is defined as: 

f and Re can be combined to give: 

where n denotes the dimensionless coordinate normal to the wall. 
References 10 and 11 have disclosed the emergence of a secondary vortex initially emerges in 

the vicinity of the trailing wall. Hence, the evolution of the vortex can be monitored through a 
change in the boundary vorticity on the trailing wall whose intensity is defined as: 

The surface vorticity intensity is integrated from z' = 0 to 1/2 to distinguish the condition of 
no secondary vortex from that of a symmetric secondary vortex. In spite of the asymmetry of 
secondary vortices under certain circumstances, the variation of vortex can still be illustrated 
by this form of integration. The surface vorticity intensity replaces the friction factor as an 
indication for the presence of a secondary vortex for the following reasons: (1) the friction factor 
is not sensitive to an inception and evolution of a small secondary vortex, (2) the surface vorticity 
intensity can recognize the pattern of a secondary vortex when it becomes asymmetric, and (3) 
the surface vorticity intensity is much less sensitive to the grid number than the friction factor 
so that coarser meshes may be used in computations. 

RESULTS AND DISCUSSION 

Numerical computations are carried out to determine the flow patterns, surface vorticity intensity 
and friction factor. Figure 2 shows the critical points for an inception of flow instability on a plot 
of the critical Rossby number against the Reynolds number. Table 2 lists the range of critical 
Rossby numbers versus the Reynolds number. The first critical point is defined as the condition 
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Table 2 Range of critical Rossby numbers 

Re 

350 

Frist critical point 0.2125-0.2150 

350 

Restabilization critical point 0.3925-0.3950 

400 

0.1400-0.1425 

400 

0.3575-0.3600 

500 

0.0825-0.0850 

500 

0.2850-0.2875 

1000 2000 

0.0205-0.0210 0.00525-0.00550 

600 670 

0.2300-0.2325 0.2000-0.2025 

for an inception of a secondary vortex, while the restabilization critical point corresponds to 
the condition for the disappearance of the secondary vortex. The Re Ta value for the first critical 
point in the present study ranges from 21,000 to 26,000, which is in agreement with the predictions 
of Hwang and Jen8, while the Re Ta value for the restabilization critical point lies in the range 
48,000 to 90,400. The determination of these critical points is described later, but the lowest 
critical Reynolds number and its corresponding Rossby number are not determined due to the 
complexity in computations. It is seen in Figure 2 that the loci of the first and restabilization 
critical points define Regimes I, II and III. Regime I is the domain in which only one pair of 
vortices exist throughout the entire channel. In Regime II, secondary vortices appear but break 
down as it moves downstream. Regime III corresponds to the restabilization zone where a pair 
of small vortices emerge near the trailing wall but are soon destroyed, never growing to form 
a secondary vortex. 

This observation implies the existence of three different flow pattern evolutions for the Reynolds 
number in the range of 300 to 200: (i) a pair of principal vortices appear at slow rotation; i.e. 
Regime I; (ii) an increase in the rotational speed induces the generation of secondary vortices 
around the centreline (z' = 0.5) near the trailing wall which eventually break down; (iii) as the 
rotational speed is further increased, a generation of secondary vortices is inhibited with the 
flow being restabilized to exhibit a pair of principal vortices; i.e. Regime III. The breakdown 
of secondary vortices was also reported in Reference 9. 

Regime I (principal vortex) prevails for flows at the Reynolds numbers lower than 300. Two 
distinct vortex patterns exist when the Reynolds numbers exceeds 680: (i) Regime I principal 
vortex pattern at low rotational speeds, and (ii) Regime II with the generation followed by 
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collapse of secondary vortices at higher rotational speeds. Unstable flow occurs only in range 
of 680 > Re > 300. Similar findings are reported in References 3-7 for the rotating ducts of high 
aspect ratios as well as the square channel only one pair of secondary vortices. These references 
report no finding of vortex breakdown. In the interest of brevity, representative cases of Re = 500, 
670 and 1000 are presented here for discussing flow instability phenomena: 

Stationary case 
Viscosity and non-slip boundary conditions cause the flow to be retarded near the walls and 

the fluid mass to be brought into the channel core in order to satisfy the continuity. In the 
absence of gravity and rotation, the transverse flow velocity is directed towards the channel 
centre, resulting in positive values for both the boundary vorticity and the surface vorticity 
intensity at the trailing wall from z' = 0.0 to z' = 0.5. After the flow enters the channel, the 
transverse flow velocity near the walls changes drastically. The change diminishes rapidly as 
soon as the flow begins to retard. That is why the surface vorticity intensity approaches an 
asymptotic value of slightly above zero in a short distance from the inlet, as seen in Figure 3a. 
Figure 4a depicts that the friction factor reaches an asymptotic value at further downstream 
than the surface vorticity intensity. 
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Principal vortex case (Regime I) 
The vortex pattern appears as soon as the flow enters a rotating channel10,11. Even a very 

slow rotation can induce the principal vortices which cause a sharp drop in the surface vorticity 
intensity to a negative value, as shown in Figure 3b. It results from an interaction of viscous 
and rotational effects with viscosity retarding the flow and rotation inducing the longitudinal 
vortices in the channel cross-section. Since a large amount of mass near the walls must move 
to the channel core while the transverse flow cannot drastically deform like in the stationary 
case, mass is carried by the vortices towards the central core. Therefore, the transverse velocity 
near the trailing wall, especially the w component, is high near the entrance resulting in a 
negative boundary vorticity (due to a negative w in the region of y' < 0.5 and 0 ≤ z' ≤ 0.5) and 
a negative surface vorticity intensity. As the flow proceeds downstream, less mass needs to be 
moved, and the transverse velocity diminishes. This results in a rebound in the distribution of 
σ. If rotation is too slow to induce secondary vortices, the flow velocity profiles become invariant. 
Eventually, mass balance is achieved with the surface vorticity intensity approaching a constant 
value; e.g., Ro = 0.080 in Figure 3b. Figures 5a and 5b depict a pair of the principal vortices 
which prevail over a long distance. 

The first critical point of flow at Re = 500 can be determined from Figure 3b. Before the 
Rossby number reaches 0.080, the asymptotic value of the surface vorticity intensity is diminished 
with an increase in the rotational speed (not shown). Once Ro exceeds 0.080, the asymptotic 
value of <x increases as the rotational speed is increased. The increase of σ is caused by the 
appearance of secondary vortice. The Rossby number where the σ asymptotic value begins to 
grow is defined as the first critical point. In the case of Re = 500, the first critical point is between 
Ro = 0.0825 and 0.0850. 

Secondary vortex case (Regime II) 
When the rotational speed exceeds the critical value, a pair of small vortices begin to emerge 

around the centerline near the trailing wall. It is depicted in Figure 3b that all curves undergo 
a steep fall followed by a very steep rise, irrespective of Ro values. At Re = 500, no secondary 
vortex is seen at Ro = 0.080, while it becomes obvious in pair at Ro = 0.10. After the rebound, 
σ continues to grow in the Ro = 0.10 case because the secondary vortex rotates in the direction 
opposite to that of the principal vortices. Hence, the surface vorticity intensity will grow once 
the secondary vortex appears. If the secondary vortex is strong enough, σ will approach a 
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positive constant, otherwise it would remain negative. Figures 5c and 5d depict flows with small 
secondary vortices at Re = 500 and Ro = 0.10. When the rotational speed is further increased, 
the secondary vortices grow stronger and faster, and σ overshoots into the positive region after 
a rebound, see Ro = 0.250, 0.280 and 0.285 in Figure 3c. The σ growth peaks out followed by 
a rapid fall and then levels off. Similar to the principal vortex case, it is caused by the redistribution 
of mass induced by the secondary vortex in order to satisfy mass continuity requirement. Figure 
3c also discloses that the peak of σ overshoots moves downstream with an increase in the Rossby 
number (rotational speed). The asymptotic values of σ following overshoots are almost the same 
irrespective of the Rossby number. As it proceeds downstream, vortex flow undergoes another 
change, namely a breakdown of secondary vortices. It results in a decline, oscillation and levelling 
off of surface vorticity intensity, as seen in Figure 3c at Ro = 0.250, 0.280 and 0.285. The location 
where σ begins to fall moves upstream with an increase in the Rossby number. This phenomenon 
was also discussed in Reference 9 and will be discussed later. 

The effect of secondary vortices also appears in the friction factor distribution, as shown in 
Figures 4b and 4c. Figure 4b display that all f Re curves are similar in shape irrespective of 
secondary vortices in presence or not. However, only in flows with strong secondary vortices, 
their f Re curves in Figure 4c resembles the σ curves in Figure 3c. Figures 6a-6h reveal that 
mass redistribution induced by secondary vortices strongly affects the flow in the trailing half 
(y' < 0.5), especially in the area near the centreline. 
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Restabilization case (Regime III) 
When the rotational speed is further increased, another critical state is reached in which the 

secondary vortex fails to form with the surface vorticity intensity behaving quite differently from 
that discussed above. It is seen in Figure 3c at Ro = 0.2875, 0.290 and 0.30 that after a flow 
enters the channel, its transverse velocity near the trailing wall is large but diminishes to form 
a rebound of σ as the flow proceeds downstream. However, at certain distance downstream, 
the principal vortex grows stronger and engulfs smaller secondary vortices, while the surface 
vorticity intensity diminishes. Eventually, mass balance is achieved, vortex flow becomes 
invariant, and surface vorticity intensity reaches a constant. It should be noted that the higher 
the Rossby number, the sooner the surface vorticity intensity becomes stable. This means that 
a strong principal vortex contributes to a quicker mass balance. The observation is supported 
by Figure 4c demonstrating that a strong principal vortex contributes to a smaller overshoot in 
the friction factor distribution for restabilization. Figures 7a through 7e depict a series of variation 
in vortices along the channel at Ro = 0.2875 and Re = 500. In comparison with Figures 6a-6h 
at Ro = 0.285 and Re = 500, both flows share the same patterns until X = 24a beyond which 
the smaller vortices adjacent to the trailing wall disappear in the case of Ro = 0.2875. However, 
no restabilization phenomenon is found in flows with a higher Reynolds number (Re ≥ 680). It 
is conjectured that under such a high-speed flow the inertia of the secondary vortex becomes 
strong enough not to be integrated into the principal vortex. From the behaviour of flows at 
Ro = 0.2850 and 0.2875, the restabilization critical point is determined. 

Another interesting phenomenon is disclosed in flow at Re = 670 which is close to the upper 
limit of the Regime II. As depicted in Figure 3d, the σ curves for flows at Ro ≥ 0.2025 exhibit 
an oscillation which is damped out downstream. The sharp drop of σ in Figure 3d is not caused 
by the breakdown of secondary vortices like that in Figure 3e. It results from the separation 
and disappearance of smaller vortices as seen in Figure 7b. The variation of this small vortex 
pair is illustrated in Figures 8a through 8f, where they drift apart and eventually integrated into 
the principal vortex. The weak oscillation of σ after X = 48a in Figure 3d is induced by the 
oscillation of the principal vortex pair. 

Breakdown of secondary vortices 
Figure 3e shows two kinds of breakdown of secondary vortices, depending upon the Rossby 

number. In the Regime II of Figure 2, the breakdown process at a lower rotational speed, 
experiences a series of asymmetric deformation: an evolution in which stronger secondary vortices 
engulfing the weaker ones, destruction and reproduction of secondary vortices, as seen in Figure 
3e at Ro = 0.035 and 0.05. The same kind of vortex breakdown is also found in the case of 
Re = 500 and Ro = 0.20 (not shown). A typical process is illustrated in Figure 9 for Re = 1000 
and Ro = 0.05. It reveals that (a) the secondary vortex pair are practically symmetrical at 
X = 200a, (b) the one in the right half region grows stronger into the left half region at X = 260a, 
(c) at X = 300a, the secondary vortex pair disappear, (d) the pair emerge again at X = 360a, 
(e) the vortex in the left half region grows stronger into the right half region, just opposite to 
that observed at X = 260a, and (f) through (j) with the same phenomena observed in (a) through 
(e) repeating in X = 400a-600a. This periodical vortex change persists downstream. 

It is also discussed that the period of vortex change is shortened with an increase in the 
Rossby number; for example from Ro = 0.035 to 0.05 in Figure 3e. However, as the rotational 
speed is further increased from Ro = 0.075 to 0.10 in Figure 3e or Ro = 0.250, 0.280 and 0.285 
in Figure 3c, the magnitude of re-production secondary vortices diminishes. Eventually, secondary 
vortices re-production is terminated while the principal vortex pair oscillate and gradually 
stabilize. This is the second kind of vortex breakdown which takes place much faster than the 
first kind. Figure 6c through 6g demonstrate a typical example of the second kind of vortex 
breakdown with only one evolution. Since the vortex flow pattern undergoes numerous 
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variations, it is inappropriate to treat the rectangular or square channel flow with rotation to 
have a symmetric flow pattern with respect to the channel centreline over the entire flow passage, 
or to study only one-half of the flow cross-section in a fully-developed flow region. In general, 
the symmetry of secondary vortices prevails only up to a distance 0.2 (a Re) from the entrance. 

Mechanism of vortices 
Until now, the mechanism of variation of the Coriolis-induced vortices is not fully understood. 

Some insight into such a mechanism is presented in the following: the axial flow velocity profile 
in the absence of rotation takes a symmetrical form with respect to the channel centreline as 
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shown in Figure 10a. The initiation of radial rotation induces the velocity profile to deform 
forming an asymmetrical tip pointing towards the trailing wall as depicted in Figure 10b. It is 
induced by the principal vortex that transports fluid particles in the central core of the channel 
towards the trailing wall, as the flow proceeds downstream. The change in the velocity profile 
is accompanied by an alteration in its slope and consequently a variation in the shear stress, 
especially in the region adjacent to the trailing wall. Figure 10c shows all forces acting on a fluid 
particle whose velocity is identified by a dot on the velocity profile in Figure 10b. They include 
the Coriolis force Fc, inertia force FI and shear force τ that determine the motion of the particle. 
Here, the inertia force refers to the driving potentials such as pressure gradient and centrifugal 
force. In the present study, the transverse motion of fluid particles in the cross-section is induced 
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by the Coriolis force, resulting from the interaction of rotation and axial flow velocity. Due to 
a strong non-linear interaction among these forces, it is difficult to identify which force induces 
or demolishes the secondary vortex. In the principal vortex case, the Coriolis force in the negative 
y-direction, Fcy, is probably the driving force to bring about the principal vortex which transports 
the fluid particles against rotation in the region near the channel centreline and trailing wall. 
Notice that Fcy always acts in the negative y-direction, because of positive axial velocity. At a 
lower rotational speed, the fluid particles at the channel centreline (z' = 1/2) move slowly towards 
the trailing wall. The motion of fluid particles is retarded in the intersection region of the trailing 
wall with the centreline. 

As the rotational speed is increased, the vortex strength grows with these retarded particles 
being dragged to move by the shear force. In the course of flow along the channel, if the vortex 
strength reduces to such an extent the shear force cannot drag those retarded particles, a small 
vortex of opposite rotation is initiated in order to satisfy mass continuity, see Figure We. Should 
this small vortex survive the interaction of the oppositely-rotating principal vortex, it becomes 
the secondary vortex. The mechanism of reversal in the direction of particle motion is probably 
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due to increases in the magnitude of τzy and τyy in the positive y-direction and that of τyz and 
ΤZZ in the positive z-direction. However, if the flow is in the range of an intermediate Reynolds 
number (that is, 300 < Re < 680), the Coriolis force becomes dominant again with an increase 
in the rotational speed. Under such circumstances, the strength of the principal vortex would 
be strong enough to carry the retarded particles, thus destroying the small vortex. This is the 
phenomenon of flow restabilization. Figures 6 and 7 display the difference between the 
development and destruction (i.e., restabilization) of the secondary vortex. In Figures 6a through 
6h, a smaller vortex appearing at X = 24a continues to grow in the course of flow down the 
channel, thus forming the secondary vortex. In contrast, the smaller vortex observed at X = 24a 
disappears in Figures 7a through 7e; i.e., flow restabilization. 

If the Reynolds number is increased beyond 680, once the smaller vortex is formed, it will 
continue to grow. This is attributed to the effort of stronger inertia force which supports and 
even strengthens the small vortex not to be destroyed by the principal vortex. 

During the process of breakdown of secondary vortices, the initially symmetric secondary 
vortex pair become asymmetric, and one of them grows much stronger to evolve the other one, 
such as Figure 10f. The inertia force supporting secondary vortices eventually diminishes, unable 
to maintain the symmetry. During the interaction between the two secondary vortices, one 
accumulates more mass and energy than the other. Once an imbalance happens between the 
two vortices, the destruction of the weaker one is accelerated not only by the stronger one but 
also by the principal vortex. Finally, the stronger secondary vortex prevails, but is soon destroyed 
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by the principal vortex because it is unable to resist the bigger priucipal vortex. The situation 
prevails when the circulation is the opposite direction from that of the principal vortex; e.g., 
Figures 6c and 9j. In some cases, however, the secondary vortex may emerge again. This happens 
if the principal vortex is not strong enough to sweep through the intersection of the trailing wall 
with channel centreline. Therefore, the viscosity once again acts as the driving force for the 
inception of small vortices and the whole process repeats. The one being destroyed is that which 
has integrated its partner earlier. This process is observed in Figure 9. More investigation on 
the mechanism is desirable. 

In summary, the balance of the Coriolis, viscous and inertia forces, and the channel geometry 
determine the flow patterns and the inception of flow instability. 

CONCLUSIONS 

A numerical study has been conducted to investigate flow instability in a laminar flow through 
a square channel in radial rotation. The following conclusions are derived: 

(1) At an intermediate Reynolds number (300 < Re < 680), the longitudinal vortex pattern 
induced by the Coriolis force undergoes three types of flow instability. They are exhibited in 
the form of: (i) one vortex pair (principal vortex) at slow rotation, (ii) a formation followed by 
breakdown of secondary vortices near the channel centreline over the trailing wall at intermediate 
rotation, and (iii) restabilized principal vortex pattern in the absence of a secondary vortex at 
higher rotation. These instability phenomena are similar to those found in a high-aspect-ratio 
channel3-7. 

(2) At higher Reynolds numbers (Re ≥ 680), the flow exhibits only two vortex patterns: 
(i) a principal vortex at slow rotation, and (ii) formation/breakdown of secondary vortices at 
higher rotation. However, no flow instability occurs at low Reynolds numbers (Re ≥ 300). 

(3) In certain cases, a repetition of the zig-zag breakdown process of secondary vortices prevails 
over a long flow passage. However, in most cases, the breakdown process takes place within a 
rather short distance. 

(4) In general, the symmetry of a vortex pair prevails up to a distance 0.20 (a Re). At a low 
Reynolds number (Re < 300) and in the restabilization region, a symmetrical vortex flow prevails 
over the entire flow passage. 

(5) Both the Coriolis force and viscous effect play a crucial role in both the mass redistribution 
near the channel inlet and the breakdown of the secondary vortex. 

(6) Surface vorticity intensity is a measure for the incipience of a secondary vortex as well as 
the subsequent vortex variation. 
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